SAULT COLLEGE OF APPLIED ARTS \& TECHNOLOGY

SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

Course Title:	MATHEMATICS
Code No.:	MTH 554-4
Program:	MECHANICAL TECHNOLOGY
Semester:	II
Date:	DECEMBER, 1983
Author:	J. SUFADY

New
Revision:

APPROVED:

Date

MECHANICAL TECHNOLOGY
MTH 554-4
MATHEMATICS

CALENDAR DESCRIPTION

MATHEMATICS
MTH 554-4
Course Name
Course Number

PHILOSOPHY/GOALS:

Students studying mathematics at this level are those individuals where a certain degree of originality, a sense of logic and an ability to learn independently are required of them in their major subject area. This course serves to exercise these three requirements and to also give them a theoretical knowledge for their academic subjects.

METHOD OF ASSESSMENT (GRADING METHOD) :

1. Three to four tests per semester.
2. Final grade is a weighted average of these tests.
3. A falling grade at the end of the semester can be upgraded by writing a two-hour comprehensive examination.

TEXTBOOK (S) :
Technical Calculus with Analytic Geometry by Allan J. Washington

OBJECTIVES:

The basic objective is for the student to develop an understanding of the methods studied, knowledge of the facts presented and an ability to use these in the solution of problems. For this purpose exercises are assigned. Tests will reflect the sort of work contained in other assignments. The level of competency demanded is the level required to obtain an overall passing average on the tests. The material to be covered is listed on the following page.

MECHANICAL TECHNOLOGY
MTH 554-4
MATHEMATICS

TOPIC NO.	PERIODS	TOPIC DESCRIPTION	REEERENCE
1	9	Centroid and Moment of Inertia	Washington p. 154-166
		(courses other than Electrical	
		\& Electronic)	
		Moment of area and mass	
		Centre of gravity of areas \& volumes	
		Moment of inertia of areas \& volumes	
		Radius of gyration	
2	6	Other Applications of Integration	Washington
		Fluid pressure	p, 167-171
		Work	Blakely, Ch
		Mean \& root mean square values	p. 142-145
3	9	Differentiation \& Integration	Washi ngton
		of Trigonometric Function?	p. 172-202
		Trigonometric Functions	224-228
		Inverse trigonometric functions	Blakely
		Applications of trigonometric \&	$\text { Ch, 9, } 10$
		inverse trigonometric functions	p. 146-200
4	6	Differentiation \& Integration of	Washi ngton
		Logarithmic \& Exponential	p. 203-217
		Functions	220-224
		Logarithmic Functions	
		Exponential Functions	Blakely
		Hyperbolic Functions (EI \& Electronic)	Ch. 11, 12 p. 202-224
		Electrical \& Electronic applications	225-236
		Mechani cal applications	
5	25	Methods of Integration	Washington
		Algebraic substitution,	p. 228-243
		Use of trigonometric relations	Blakely
		Inverse trigonometric forms	Ch. 13
		Integration by parts	
		Trigonometric substitution	
		Partial fractions	

